
EXPRESSION DOMAIN TRANSLATION NETWORK
FOR CROSS-DOMAIN HEAD REENACTMENT

Taewoong Kang1,∗ Jeongsik Oh2,∗ Jaeseong Lee2 Sunghyun Park2 Jaegul Choo2

1 Korea University 2 KAIST

ABSTRACT

Despite the remarkable advancements in head reenact-
ment, the existing methods face challenges in cross-domain
head reenactment, which aims to transfer human motions to
domains outside the human, including cartoon characters. It
is still difficult to extract motion from out-of-domain images
due to the distinct appearances, such as large eyes. Recently,
previous work introduced a large-scale anime dataset called
AnimeCeleb and a cross-domain head reenactment model, in-
cluding an optimization-based mapping function to translate
the human domain’s expressions to the anime domain. How-
ever, we found that the mapping function, which relies on a
subset of expressions, imposes limitations on the mapping of
various expressions. To solve this challenge, we introduce a
novel expression domain translation network that transforms
human expressions into anime expressions. Specifically, to
maintain the geometric consistency of expressions between
the input and output of the expression domain translation
network, we employ a 3D geometric-aware loss function that
reduces the distances between the vertices in the 3D mesh
of the human and anime. By doing so, it forces high-fidelity
and one-to-one mapping with respect to two cross-expression
domains. Our method outperforms existing methods in both
qualitative and quantitative analysis, marking a significant
advancement in the field of cross-domain head reenactment.

Index Terms— Cross-domain, Head Reenactment

1. INTRODUCTION

Given the advancements in online live streaming platforms
such as YouTube, there has been a growing trend among users
to express themselves through virtual avatars (i.e., virtuber).
This trend has elevated the significance of head reenactment
tasks, wherein human motions are transferred to other vir-
tual characters in response to such user needs. Recent stud-
ies [1, 2, 3, 4, 5] in head reenactment have made it possi-
ble to transfer human motions onto other human heads, by
leveraging large-scale datasets of human talking head videos.
However, existing head reenactment methods still face chal-
lenges when applied to virtual avatars, such as anime charac-
ters, which exist outside the human domain.

Such a process of transferring human head motion to

Fig. 1. Cross-domain head reenactment examples of our
method. Given the anime image, we edit it by injecting the
pose and expression from driving image.

images from domains outside the human is referred to as
cross-domain head reenactment. Conventional head reenact-
ment approaches typically encode the human motion through
landmarks [1, 2], 3D morphable models (3DMM) [3], or
latent descriptors [6]. However, extracting motion from out-
of-domain images (e.g., cartoon characters) with distinct
appearances, including small mouths or large eyes, is chal-
lenging. Moreover, due to the shortage of suitable video
datasets for head reenactment for other domains, it is difficult
to facilitate cross-domain head reenactment.

To address these challenges, only a few works [7, 8, 9,
10] have attempted to tackle cross-domain head reenactment.
Recently, AnimeCeleb [7] has endeavored to facilitate head
reenactment of cartoon characters by constructing a large-
scale animation dataset based on 3D character models, in-
cluding pairs of 2D cartoon images and pose vectors. Fur-
thermore, they proposed a cross-domain head reenactment



approach leveraging two domain datasets (i.e., AnimeCeleb
and VoxCeleb [11]). Specifically, AnimeCeleb has designed
an optimization-based mapping function to transform Anime-
Celeb’s pose vectors into the 3DMM space, leveraging land-
marks of specific expressions (e.g., left closed eye). Even
when trained solely on AnimeCeleb, the model is applicable
to a wide range of cartoon images with various styles, such
as Waifu Labs 1, Naver Webtoon 2 and 2D Disney 3. How-
ever, we discovered that during the process of mapping ex-
pressions of AnimeCeleb’s pose vector to the 3DMM spaces,
the optimization-based method relying on only a subset of
expressions imposes limitations on mapping various expres-
sions, as illustrated in Fig. 1.

To overcome the lack of reflecting facial expressions
caused by the limitations, we propose a novel expression do-
main translation network to map the human expressions to
the anime expressions. This network is designed to transform
3DMM parameters into semantically equivalent pose vectors.
Specifically, our main idea is to train the network with our
novel 3D geometric-aware loss that reduces the distances
between the vertices in the 3D mesh of the human and anime.
This approach aims to maintain the geometric consistency of
the two different domain’s expressions utilizing the shared
vertex space. By doing so, it forces high-fidelity and one-to-
one mapping with respect to two cross-expression domains.
Through experiments, we demonstrate the superiority of our
method in the field of cross-domain talking heads.

2. METHODOLOGY

In this section, we present our cross-domain head reenact-
ment framework. Given the driving image Id of the human
domain with the 3DMM vector p, our model aims to generate
anime image Î by modifying the head pose and face expres-
sions of the source image Is of the anime domain.

2.1. Expression Space Domain Gap

We employ a DECA [12] as a 3DMM encoder to extract
FLAME [13] parameters to encode human motion. Specif-
ically, with FLAME parameters, human face mesh can be
represented as:

TP (β, θ, ψ) = T+BS(β;S)+BP (θ;P )+BE(ψ;E), (1)

where BS(β;S), BP (θ;P ), and BE(ψ;E) denote shape,
head angle, and expression blendshapes, and T indicates the
average mesh shape in zero pose. However, we only utilize
expression coefficients ψ ∈ R50 and head pose θ ∈ R6,
where θ = [pose; jaw]; pose ∈ R3; jaw ∈ R3.

Basically, we leverage the AnimeCeleb dataset [7], which
consists of pairs of anime images and pose vectors. While
for encoding anime motion, we utilize AnimeCeleb’s pose
vectors v ∈ R20, which consist of 17-dimensional expres-
sion coefficients b ∈ B and head angles h ∈ H, following

1https://waifulabs.com/
2https://comic.naver.com/
3https://toonify.photos/

the previous work [7]. Specifically, expression coefficients b
consist of six eye-related dimensions, six eyebrow-related di-
mensions, and five mouth-related dimensions. For instance,
the first dimension of the pose vector v corresponds to a left-
eye wink, and thus it holds a value within the range of 0 to 1,
varying according to the degree of the eye being closed.

There exist differences in the representation of facial pose
and expression between human and anime. Therefore, for ef-
fectively transferring human motion to anime images, it is
crucial to accurately map FLAME parameters encoding hu-
man motion to pose vectors representing anime motion. No-
tably, while head angles allow for precise one-to-one mapping
as described in the previous work [7], the approach for trans-
lating human’s expression coefficients ψ ∈ R50 into anime’s
expression coefficients b ∈ R17 is required.

2.2. Expression Domain Translation Network

To map the human’s expression coefficients ψ into anime’s
expression coefficients b, we propose expression domain
translation network M. Specifically, with p = [ψ; jaw]
as input variables that are related to the face expressions,
the model outputs the expression coefficients b. Given that
FLAME incorporates expressions in conjunction with the jaw
to construct the mesh, the use of jaw becomes an indispens-
able component. When we train the network, a paired dataset
that denotes equivalent facial expressions on two different do-
mains is required. However, due to the domain discrepancy,
it becomes imperative to train the model using an unpaired
dataset. To address this issue, we utilize a pose adapter and
train the expression domain translation network M with a 3D
geometric-aware loss.
Pose Adapter. To map the anime’s expression coefficients b
onto the vertex space, it needs to be converted into ψ form.
Consequently, we employed the use of a pose adapter T . In
order to obtain T , we use the same step with mapping func-
tion T from Animo [7]. The difference between the mapping
function and the pose adapter is that the mapping function
maps to BFM [14] expression parameters β ∈ R64, while
the pose adapter maps to FLAME [13] expression parameters
ψ ∈ R50. Moreover, unlike the mapping function, which uses
the mapping anime to human expression directly, we only use
a pose adapter to send it to the vertex space for the purpose of
mapping the human to anime expression more continuously.
3D Geometric-Aware Loss. To identify the anime’s ex-
pression coefficients b that is semantically equivalent to ψ,
we train the expression translation network M utilizing 3D
geometric-aware loss. Due to the expression space domain
gap, we map both b and ψ to the vertex space, which is a
mutually compatible space. Additionally, utilizing the vertex
space allows us to use geometrically aware information. Ex-
ploiting these characteristics, we train the parameters from
each domain to possess expressions that are geometrically
congruent. To ensure that the corresponding vertices have



Fig. 2. Overview of our framework. For visual clarity, we have omitted the head rotation parameters.

identical coordinates, we employ a vertex loss term. This
term applies mean squared error loss between the predicted
and actual 3D coordinates of each vertex constituting the
mesh. Additionally, we extract just the 68 keypoints ki from
vertices to further train on important information.

Llm =

68∑
i=1

∥ k̂i − ki ∥1 . (2)

To better capture sensitive and important features like the eyes
and mouth, we have applied an eye and mouth closure loss.
This loss computes the relative offset of landmarks k̂i and
k̂j on the upper and lower eyelid and outer mouth, and mea-
sures the difference to the offset of the corresponding pre-
dicted landmarks ki and kj . The loss is defined as

Leye,mouth =
∑

(i,j)∈E,M

∥ |k̂i − k̂j | − |ki − kj | ∥1, (3)

where E is the set of upper and lower eyelid landmark pairs
and M is the set of upper/lower outer mouth landmark pairs.
In summary, our full objective function is given as:

Ltotal = Llm + Leye,mouth + λver · Lver. (4)

Here, λver is the hyperparameter and set to 100.

2.3. Anime Generator

Fig. 2 provides an overview of our framework. In this section,
we introduce the remaining part of our framework, which syn-
thesizes anime images based on the pose vectors predicted
from the expression domain translation network. Our genera-
tor is based on PIRenderer [3], following previous work [7].
Motion Network. With a driving pose v, the motion network
F generates a latent pose code z. Thanks to the M and the
characteristics of v, the motion network F can be designed
as the domain-agnostic and controllable method, which is the
main difference with PIRender [3]. Then, we just need the
generator that can edit the source image with the given z.
Warping & Editing Network. With warping and editing net-
work, we can generate an image that is guided by z through

adaptive instance normalization (AdaIN) [15]. A warping net-
work predicts the optical flow u that serves to approximate
the coordinate offsets to reposition a source head like a driv-
ing head. An editing network that serves to portray a detailed
expression-related pose gets the source image, optical flow u,
and latent pose code z. Refer to PIRenderer [3] for details.

With our expression domain translation network and the
anime generator, we are capable of achieving state-of-the-art
performance in cross-domain head reenactment.

3. EXPERIMENTS

3.1. Experiment Setup

Datasets. To train our expression domain translation network
M, we take a subset of videos from Voxceleb [11]. We down-
loaded 18,503 videos for train set and 504 videos for test set.
Also, we use AnimeCeleb [7] dataset to train anime generator.
Training Details. The expression domain translation net-
work M and anime generator G are trained separately. For
the expression domain translation network M, we trained it
for 50 epochs, where the batch size is 512, and the optimizer
is Adam with a learning rate of 1 × 10−4. For the generator,
we trained the model for 200 epochs, where the batch size is
8, and the optimizer is Adam with a learning rate of 1×10−4.

3.2. Comparison with Baselines

We compare out model with the baselines such as FOMM [1],
PIRenderer+T [3, 7], and Animo [7]. Moreover, we have em-
pirically substantiated the efficacy of our model with respect
to its distributional characteristics.
Quantitative Evaluation. Table 1 shows quantitative com-
parisons between our model and the baselines [1, 3, 7] on
the cross-domain face reenactment. When evaluating cross-
domain face reenactment, we found that existing metrics do
not adequately capture facial expressions. Therefore, we
introduce a new metric, called the Keypoint Distance Ratio
(KDR), which measures the ℓ1 distance ratio of eyes com-
pared with neutral keypoints’ distance. The reason why we



Fig. 3. Qualitative comparison between our model and the
baselines on cross-domain face reenactment given the source
image from AnimeCeleb [7], Naver Webtoon, 2D Disney and
the driving image from VoxCeleb [11]

Fig. 4. T-SNE visualization. (A) Ours shows a lower expres-
sion distribution discrepancy than (B) Animo.

compare the relative distance of eyes is that there is topo-
logical heterogeneity between human and anime character
domain (e.g., Anime character’s abstract distance of eye’s
lid is innately larger than humans’). Specifically, this ratio
compares the upper and lower eyelid distances in both the
driving image and the predicted image. For a more detailed
analysis, we employ a keypoint detector [16] designed for
the anime domain. Because the keypoints in anime are dif-
ferent from those in humans, we measure the ℓ1 distance and
compare ratios, considering the geometrical heterogeneity.
As evidenced in Table 1, our model outperforms in both FID
and KDR metrics despite its advantages of a smaller size and
shorter training time due to single-dataset training.
Qualitative Evaluation. Fig. 3 shows qualitative compar-
isons between our model and the baselines. In the realms of
texture and identity preservation, it is discernible that both
our method and Animo [7] clearly outperform FOMM [1]
and PIRenderer+T [3]. Moreover, while Animo exhibits lim-
ited capability in faithfully capturing facial expressions, our
method demonstrates a markedly superior performance in ac-
curately reflecting them. We conclude that the expression do-
main translation network M serves as an instrumental compo-
nent, facilitating the successful cross-domain transfer of facial

Train Dataset Model Cross-Domain

FID↓ KDR↓

Joint Dataset
(Vox, AnimeCeleb)

FOMM 100.95 N/A
PIRenderer + T 49.55 N/A

Animo 28.69 0.466

AnimeCeleb Ours 23.15 0.236

Table 1. Quantitative results of animation face reenactment.
FOMM [1] and PIRenderer [3] are not available for KDR be-
cause distorted output makes keypoint detection impossible.

Loss KDR↓
Vertex Landmark E&M Dist.

✓ 0.2431
✓ 0.2394

✓ ✓ 0.2390
✓ ✓ ✓ 0.2360

Table 2. Ablation study on the loss component. E&M Dist.
indicates eye and mouth closure loss.

expressions within the model. More qualitative results and
video results are available on the project website 4.
Distribution Concurrency. One of the key factors contribut-
ing to the efficacy of our method is the successful alignment
of distributions across both domains. To empirically validate
this, we conducted a t-SNE analysis on a sample size of 5,000
data points within the input space of the motion network. The
results can be visualized in Fig.4.

3.3. Ablation Study

To empirically substantiate the necessity of our loss function,
we conducted a comprehensive ablation study by dropping
the loss component. As evident from Table 2, the model that
was subjected to the full complement of loss terms demon-
strated the highest performance in KDR. Moreover, even the
configuration that was trained solely with the vertex loss out-
performed Animo [7], thereby substantiating the efficacy of
imposing loss constraints within the vertex space.

4. CONCLUSION

In this paper, we propose a novel cross-domain expression
translation network to map the human expressions to the
anime expressions. We achieve a significant improvement
in the performance of cross-domain neural talking heads by
implementing a shared 3D vertex space as a learning proxy.
Our model’s superiority is validated through both quantita-
tive and qualitative evaluations. As a direction for future
work, we aim to train the network on a dataset of human
expressions, allowing the network to mapping function as an
explicit semantic controller.

4https://keh0t0.github.io/research/ETC/

https://keh0t0.github.io/research/ETC/
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